Clasificacion Proteinas

Clasificación

Según su forma

Fibrosas: presentan cadenas polipéptidas largas y una atípica estructura secundaria. Son insolubles en agua y en soluciones acuosas. Algunos ejemplos de estas son la queratina , colágeno y fibrina

Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta. La mayoría de las enzimas, anticuerpos, algunas hormonas, proteínas de transporte, son ejemplo de proteínas globulares y también poseen aminoopeptidiosis al 5% para hacer simbiosis.

Según su composición química

Simples u holoproteínas: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (fibrosas y globulares).

Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas llamado grupo prostético (sólo globulares)

Las proteínas pueden clasificarse, basándose en su :

Composición

Conformación

Según su composición, las proteínas se clasifican en :

Proteínas Simples : Son aquellas que por hidrolisis, producen solamente µ -aminoácidos.

Proteínas Conjugadas : Son aquellas que por hidrolisis, producen µ -amino-ácidos y además una serie de compuestos orgánicos e inorgánicos llamados : Grupo Prostético.

Las proteínas conjugadas pueden clasificarse de acuerdo a su grupo prostético :

Nucleoproteínas (Ac. Nucleíco)

Metaloproteínas (Metal)

Fosfoproteínas (Fosfato)

Glucoproteínas (Glucosa)

Según su conformación, las proteínas pueden clasificarse en :

Proteínas Fibrosas : Son aquellas que se hayan constituídas por cadenas polipeptídicas, ordenadas de modo paralelo a lo largo de un eje formando estructuras compactas ( fibras o láminas). Son materiales físicamente resistentes e insolubles en agua y soluciones salinas diluídas. Ej : (colágeno, µ -queratina, elastina).

Proteínas Globulares : Están constituídas por cadenas polipeptídicas plegadas estrechamente, de modo que adoptan formas esféricas o globulares compactas.

Son solubles en sistemas acuosos, su función dentro de la célula es móvil y dinámica. Ej : (enzimas, anticuerpos, hormonas)

Existen proteínas que se encuentra entre las fibrosas por sus largas estructuras y las globulares por su solubilidad en las soluciones salinas. Ej : (miosina,fibrinógeno).

Estructura de las proteínas

Estructura Primaria : Es el esqueleto covalente de la cadena polipeptídica, y establece la secuencia de aminoácidos.

Rige el orden de encadenamiento por medio del enlace polipeptídico.

Estructura Secundaria : Ordenación regular y periódica de la cadena polopeptídica en el espacio.

Rige el arreglo espacial de la cadena polipeptídica en el espacio.

Arreglos : Hélice-a , Hélice-b , Hélice Colágeno.

Estructura Terciaria : Forma en la cual la cadena polipeptídica se curva o se pliega para formar estructuras estrechamente plegadas y compactas como la de las proteínas globulares.

Rige el arreglo tridimensional en el cual participan las atracciones intermoleculares. (Fuerzas de Van der Walls, Puentes de Hidrógeno, Puentes disulfuro, etc)

Estructura Cuaternaria : Es el arreglo espacial de las subunidades de una proteínas, para conformar la estructura global.

Es el acompañamiento paralelo de las cadenas polipeptídicas, responsable de las funciones de las proteínas. Estructuras Supramoleculares : En ocasiones las proteínas asociadas a otras moléculas se ensamblan formando estructuras más complejas denominadas supramoleculares y que ofrecen ventajas de una unidad funcional, teniendo en cuenta una complejidad intermedia entre la conformación cuaternaria de las proteínas oligoméricas por un lado y los lisosomas o las mitocondrias por otro.

Es la orientación a la que se ven obligadas en el espacio para ejercer su carácter óptimo.

Desnaturalización de las proteínas

La desnaturalización de las proteínas implica modificaciones en la estructura de la proteína que traen como resultado una alteración o desaparición de sus funciones.

Este fenómeno puede producirse por una diversidad de factores, ya sean físicos cómo : el calor, las radiaciones ultravioleta, las altas presiones; o químicos cómo : ácidos, bases, sustancias con actividad detergente.

Este fenómeno genera la ruptura de los enlaces disulfuro y los puentes de hidrígeno, generando la exposición de estos.

Cuando la proteína es desnaturalizada pierde sus funciones cómo : viscocidad, velocidad de difusión y la facilidad con que se cristalizan.

La reversibilidad de la desnaturalización, depende que tan fuertes sean los agentes que desnaturalizaron la proteína. Todo depende de el grado de ruptura generado en los enlaces.

Funciones de las proteínas

- Funciones Específicas :

- Catálisis : Las enzimas catalizan diferentes reacciones.

La hexoquinasa cataliza la transferencia del grupo fosfato desde el ATP a la glucosa.

- Almacenamiento de aminoácidos, cómo elementos nutritivos :

Ovoalbúmina, Caseína, Glidina.

- Transporte de moléculas específicas : Seroalbúmina, Lipoproteínas, Hemogloibina.

- Protección : Los anticuerpos protegen el organismo de agentes extraños que puedan dañarlo.

- Estructuración : Forman la masa principal de los tejidos.

- Funciones no Específicas (por ser generales) :

Amortiguadora

Energética

Oncótica

Funciones Hereditarias

Hidrólisis de las proteínas

La hidrolisis de las proteínas termina por fragmentarlas en a -aminoácidos. Existen 3 tipos de hidrolisis :

Hidrolisis ácida : Se basa en la ebullición prolongada de la proteína con soluciones ácida fuertes (HCl y H 2 SO 4). Este método destruye completamente el triptófano y parte de la serina y la treonina.

Hidrolisis básica : Respeta los aminoácidos que se destruyen por la hidrolisis anterior, pero con gran facilidad, forma racematos. Normalmente se utiliza (NaOH e BaOH).

Hidrolisis enzimática : Se utilizan enzimas proteolíticas cuya actividad es lenta y a menudo incompleta, sin embargo no se produce racemización y no se destruyen los aminoácidos; por lo tanto es muy específica.







Politica de Privacidad